Latest Publication:

Salt Inducible Kinases as Novel Notch Interactors in the Developing Drosophila Retina.

Şahin HB., Sayın S., Holder M., Buğra K., and Çelik A

PLoS ONE 2020; 15(6): e0234744.

Developmental processes require strict regulation of proliferation, differentiation and patterning for the generation of final organ size. Aberrations in these fundamental events are critically important in tumorigenesis and cancer progression. Salt inducible kinases (Siks) are evolutionarily conserved genes involved in diverse biological processes, including salt sensing, metabolism, muscle, cartilage and bone formation, but their role in development remains largely unknown. Recent findings implicate Siks in mitotic control, and in both tumor suppression and progression. Using a tumor model in the Drosophila eye, we show that perturbation of Sik function exacerbates tumor-like tissue overgrowth and metastasis. Furthermore, we show that both Drosophila Sik genes, Sik2 and Sik3, function in eye development processes. We propose that an important target of Siks may be the Notch signaling pathway, as we demonstrate genetic interaction between Siks and Notch pathway members. Finally, we investigate Sik expression in the developing retina and show that Sik2 is expressed in all photoreceptors, basal to cell junctions, while Sik3 appears to be expressed specifically in R3/R4 cells in the developing eye. Combined, our data suggest that Sik genes are important for eye tissue specification and growth, and that their dysregulation may contribute to tumor formation.

You are here

Fly lab - Publications

Selected Publications:

  • Bekpen C, Baker C, Hebert MD, Şahin HB, Johnson ME, Çelik A, Mullikin J, NISC Sequencing Program, and Eichler E, Functional characterization of the Morpheus gene family, bioRxiv preprint posted March 12, 2017; doi:
  • Çevrim BÇ, Mika K, Özturan G, Kahraman A, Vulstreke V, Callaerts P, and Çelik A (2020) The cell adhesion molecule Unzipped mediates neuron-neuron and neuron-glia interactions to control mushroom body development. in revision Scientific Reports
  • Khoshbakht S, Beheshtian M, Fattahi Z, Bazazzadegan Z, Yilmazer Y, Ataei R, Parsimehr E, Fadaee M, Vazehan R, Zonooz MF, Abolhassani A, Makvand M, Haddadi M, Kariminejad A, Çelik, A, Kahrizi, K., and H. Najmabadi (2020) CEP104 and CEP290; genes with ciliary functions cause intellectual disability in multiple Iranian families. submitted European Journal of Medical Genetics
  • Şahin HB, Sayın S, Holder M, Buğra K, and Çelik A (2020) Salt Inducible Kinases as Novel Notch Interactors in the Developing Drosophila Retina. PLoS One, 15(6): e0234744, doi: 10.1371/journal.pone.0234744
  • Terzioğlu Kara E, Kıral FR, Öztürk Çolak A, and Çelik A (2020) Generation and characterization of inner photoreceptor‐specific enhancer‐trap lines using a novel piggyBac‐Gal4 element in Drosophila. Archives of Insect Biochemistry and Physiology 104(2):e21675
  • Dereli Eke E, Arga KY, Dikicioglu D, Eraslan S, Erkol E, Çelik A, Kirdar B, and Di Camillo B (2019) Identification of Novel Components of Target-of-Rapamycin Signaling Pathway by Network-Based Multi-Omics Integrative Analysis OMICS: A Journal of Integrative Biology 23(5):274-284.
  • Kazeminasab S, Taşkıran II, Fattahi Z, Bazzazzadegan N, Hosseini M, Rahimi M, Olaad Nabi M, Haddadi M, Çelik A, Ropers HH, Najmabadi H, and K Kahrizi K (2018) CNKSR1 gene defect can cause syndromic autosomal recessive intellectual disability. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 177(8):691-699. doi: 10.1002/ajmg.b.32648
  • Fattahi Z, Sheikh T, Musante L, Rasheed M, Taşkıran II, Harripaul R, Hu H, Kazeminasab S, Alam MR, Hosseini M, Larti F, Ghaderi Z, Çelik A, Ayub M, Ansar M, Haddadi M, Wienker TF, Ropers HH, Kahrizi K, Vincent JB, and H Najmabadi (2018) Biallelic missense variants in ZBTB11 can cause intellectual disability in human. Human Molecular Genetics 27(18):3177-3188. doi: 10.1093/hmg/ddy220.
  • Köstler S, Alaybeyoğlu B, Weichenberger CX, and Çelik A (2015) FlyOde – a platform for community curation and interactive visualization of dynamic gene regulatory networks in Drosophila eye development. F1000Research 4:1484-9.
  • Potier D, Davie K, Hulselmans G, Sanchez MN, Haagen L, Huynh-Thu VA, Koldere D, Çelik A, Geurts P, Christiaens V, and Aerts S (2014) Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference. Cell Reports 9:1-14.
  • Mishra AK, Tsachaki M, Rister J, Shy D, Ng J, Çelik A, and Sprecher SG (2013) Binary cell fate decisions and fate transformation in the Drosophila larval eyeila. PLoS Genetics 9(12):e1004027.
  • Li X, Erclik T, Chen Z, Venkatesh S, Morante J, Çelik A, and Desplan C, (2013) Temporal specification of neuroblasts controls neuronal diversity in the Drosophila medulla. Nature 498(7455):456-62.
  • Vasiliauskas D, Mazzoni EO, Sprecher SG, Johnston RJ Jr, Lidder P, Vogt N, Çelik A, and Desplan C (2011) Feedback from Rhodopsin controls Rhodopsin exclusion in Drosophila R8 photoreceptors. Nature 479(7371):108-12.
  • Mazzoni EO, Çelik A, Wernet MF, Vasiliauskas D, Cook TA, Johnston RJ, Pichaud F, and Desplan C (2008) Iroquois-Complex genes induce co-expression of visual pigments in Drosophila. PLoS Biology 6(4):e9.
    Full Text (HTML) | PDF
    Stavenga DG, and Arikawa K (2008) One Rhodopsin per Photoreceptor: Iro-C Genes Break the Rule. PLoS Biology 6(4):e115.
  • Wernet MF, Çelik A, Mikeladze-Dvali T, and Desplan C (2007) Generation of uniform fly retinas. Current Biology 17(23):r1002-3.
    Full Text (HTML) | PDF
  • Wernet MF*, Mazzoni EO*, Çelik A*, Duncan DM, Duncan I, and Desplan C (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440(7081):174-180. *equal contribution
    Full Text (HTML) | PDF
    Featured in
    Faculty1000 ("9") and
    Hummel T, and Klaembt C (2006) Eye development: random precision in color vision. Current Biology 16(10):R361-R363.


  • Şahin HB, and Çelik A (2013) Drosophila eye development and photoreceptor specification eLS, John Wiley & Sons, Ltd: Chichester. DOI:10.1002/9780470015902.a0001147.pub2.
  • Morante J, Desplan C, and Çelik A (2007) Generating patterned arrays of photoreceptors. Current Opinion in Developmental Genetics 17(4):314-9. Review
    Full Text (HTML) | PDF
  • Fuss S, Çelik A, and Desplan C (2007) Olfactory identity kicked up a Notch. Nature Neuroscience 10(2):138-140. News&Views
    Full Text (HTML) | PDF
  • Mazzoni EO, Desplan C, and Çelik A (2004) 'One receptor' rules in sensory neurons. Developmental Neuroscience 26(5-6):388-95. Review
    Full Text (HTML) | PDF


  • A. Çelik ve Wernet, M.F.W., Editors, "Decoding Neural Circuit Structure and Function: Cellular Dissection Using Genetic Model Organisms," Springer Verlag GmbH DOI 10.1007/978-3-319-57363-2
 ISBN 978-3-319-57362-5
 ISBN 978-3-319-57363-2 (eBook)
  • Scott F. Gilbert, "Gelişim Biyolojisi, Bölüm 7, Amfibiler ve Balıklar: Erken gelişim ve eksen oluşumu," Çeviri: Arzu Çelik, 2013, Nobel Kitapevi.

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer